1.重新理解了SVM公式
2.tan^-1 其实是反三角函数
VC++实现识别手写汉字
现在是晚上8点半,希望一个半小时实现,加油
关于DPM的改进hog特征
DPM改进后的HOG特征取消了原HOG中的块(Block),只保留了单元(Cell),但归一化时,是直接将当前单元与其周围的4个单元(Cell)所组成的一个区域归一化,所以效果和原HOG特征非常类似。计算梯度方向时可以计算有符号(0-360°)或无符号(0-180°)的梯度方向,有些目标适合使用有符号的梯度方向,而有些目标适合使用无符号的梯度,作为一种通用的目标检测方法,DPM与原HOG不同,采用了有符号梯度和无符号梯度相结合的策略。如此,如果直接将特征向量化,那么单单一个 的单元,其特征维数就高达,维数过高。Felzenszwalb提取了大量单元的无符号梯度,每个单元共 维特征,并进行了主成分分析(Principal Component Analysis,PCA),发现使用前11个特征向量基本上可以包含所有的信息,不过为了快速计算,作者由主成分可视化的结果得到了一种近似的PCA降维效果。具体来说,将36维向量看成的矩阵,对每一行,每一列求和得到13维特征,基本上能达到HOG特征36维的检测效果。为了提高那些适合使用有符号梯度目标的检测精度,作者再对18个有符号梯度方向求和得到18维向量,并入其中,最后得到图 4.4中的维特征向量。